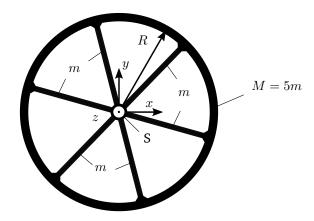
Kurzlösung - Technische Mechanik III

WiSe 2021/22 (28. März 2022)

Kurzfrage 1 [3 Punkte]



Eine Felge (Radius R, Masse M=5m) besitzt 6 Speichen (je Masse m). Berechnen Sie das Massenträgheitsmoment Θ_S des Gesamtkörpers bezüglich der z-Achse des gegebenen Koordinatensystems.

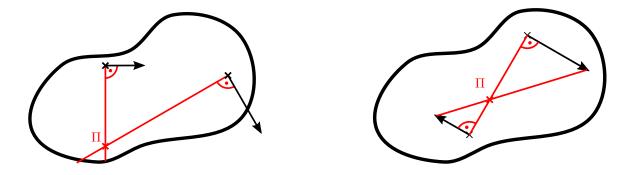
Gegeben: m, M = 5m, R

$$\Theta_S = 7mR^2$$

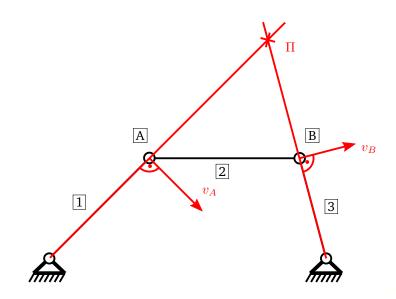
Kurzfrage 2 [6 Punkte]

Bekannt sind die Geschwindigkeitsvektoren einzelner Punkte eines Körpers. Zeichnen Sie jeweils den Momentanpol Π ein.

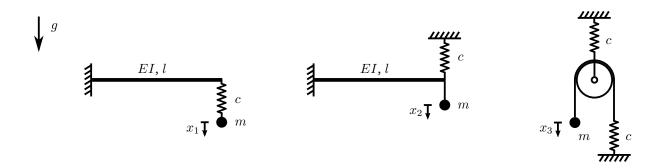
Markieren Sie rechte Winkel eindeutig:



Zeichnen Sie im nachfolgenden System den Momentanpol Π des Stabs $\boxed{2}$ ein. Zeichnen Sie dazu zunächst beliebige, jedoch zulässige Geschwindigkeiten der Knoten \boxed{A} und \boxed{B} ein.

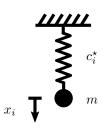


Kurzfrage 3 [7 Punkte]



Berechnen Sie die Ersatzfedersteifigkeiten c_i^{\star} der oben dargestellten Systeme für das unten dargestellte Ersatzsystem. Die Balken und die Walze sind masselos.

Ersatzsystem:



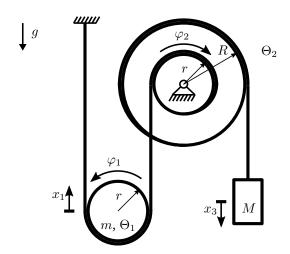
Gegeben: c, $EI = cl^3$, m, g

$$c_1^{\star} = \frac{3}{4}c$$

$$c_2^\star = 4c$$

$$c_3^{\star} = \frac{1}{5}c$$

Kurzfrage 4 [7 Punkte]



Eine Kiste (Masse M) fällt in positiver x_3 -Richtung. Infolgedessen wird das äußere Seil einer fest verbundenen Stufenwalze (Radius r bzw. R, Gesamtträgheitsmoment Θ_2 bzgl. des Mittelpunkts) abgewickelt und ein zweites, inneres Seil aufgewickelt. Im zweiten Seil hängt eine weitere Walze (Masse m, Trägheitsmoment Θ_1 bzgl. des Mittelpunkts). Zwischen den Seilen und den Walzen findet kein Rutschen statt.

Gegeben: $r, R, m, M, \Theta_1, \Theta_2, g$

Geben Sie die virtuellen Arbeiten der eingeprägten Kräfte δW

$$\delta W = -mg\delta x_1 + Mg\delta x_3$$

und der Scheinkräfte (/Trägheitskräfte) δW_T an.

$$\delta W_T = -m\ddot{x}_1 \delta x_1 - M\ddot{x}_3 \delta x_3 - \Theta_1 \ddot{\varphi}_1 \delta \varphi_1 - \Theta_2 \ddot{\varphi}_2 \delta \varphi_2$$

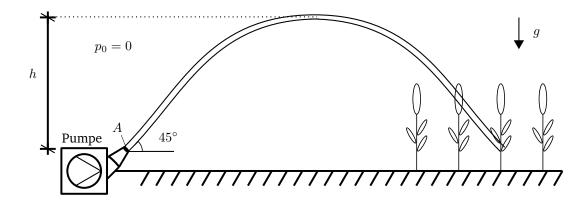
Geben Sie den Zusammenhang der virtuellen Freiheitsgrade in Abhängigkeit von δx_3 an.

$$\delta\varphi_2(\delta x_3) = \frac{\delta x_3}{R}$$

$$\delta\varphi_1(\delta x_3) = \frac{\delta x_3}{2R}$$

$$\delta x_1(\delta x_3) = \frac{r}{2R} \delta x_3$$

Kurzfrage 5 [7 Punkte]



Bauer Kurt nutzt eine alte Pumpe zur Bewässerung seiner Felder. Der Auslass der Pumpe hat die Querschnittsfläche A. Bei einem Austrittswinkel von $\alpha=45^{\circ}$ erreicht der Wasserstrahl (Dichte ρ) eine Höhe h. Der Luftdruck ist mit $p_0=0$ gegeben. Die Strömung des Freistrahls sei stationär.

a) Berechnen Sie die Geschwindigkeit v_D , mit der der Strahl die Düse verlässt.

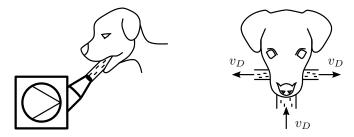
$$v_D = 2\sqrt{gh}$$

b) Berechnen Sie die Querschnittsfläche A_{top} an der höchsten Stelle des Freistrahls.

$$A_{top} = \sqrt{2}A$$

c) Bauer Kurt's Hund spielt unheimlich gerne mit Wasser und hält prompt sein Maul unmittelbar vor die Düse. Welche Kraft F erfährt der Hund, wenn der Wasserstrahl je zur Hälfte in beide Seiten senkrecht zur Strahlrichtung abgelenkt wird.

$$F=4
ho ghA$$

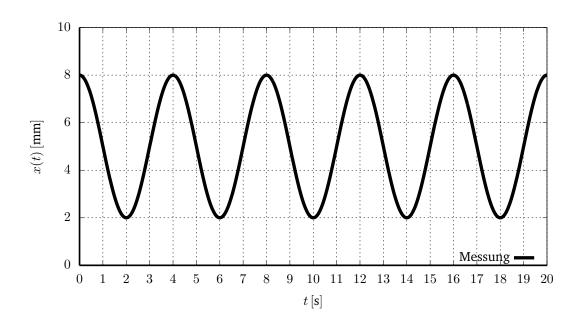


Hinweis:

- Der Luftwiderstand darf vernachlässigt werden.
- Der Wasserstrahl bleibt als Freistrahl zusammen.
- Kurt's Hund ist hart im Nehmen und ihm erfährt kein Leid.

Gegeben: A, h, ρ , g, $p_0 = 0$

Kurzfrage 6 [4 Punkte]



Für eine harmonische Schwingung wurde das oben dargestellte Signal gemessen. Geben Sie für diese Schwingung die Amplitude in mm, den Phasenwinkel in rad, die Periodendauer in s und die Frequenz in Hz an.

Amplitude: A = 3mm

Phasenwinkel: $\varphi = 0$ oder $\frac{\pi}{2}$

Periodendauer: T = 4s

Frequenz: f = 0.25 Hz

Lösung Aufgabe 1 [18 Punkte]

$$v(\varphi) = \sqrt{2g(H - \cos(\varphi)r)}$$

$$H_{max} = \frac{3\sqrt{2}}{4}r$$

$$u = \sqrt{\frac{3}{2}\sqrt{2}\frac{mgr}{c}}$$

Lösung Aufgabe 2 [18 Punkte]

$$\bar{\omega} = \frac{2}{3}(1+e)\frac{v_0}{l}$$
$$\bar{v} = \frac{1}{3}(2-e)v_0$$

$$t^{\star} = \frac{1+e}{3\mu g} v_0$$

Lösung Aufgabe 3 [20 Punkte]

a)
$$\ddot{x} + \frac{2}{3}\frac{d}{m}\dot{x} + \frac{8}{3}\frac{c}{m}x = \frac{2}{3}\frac{F_0}{m}\cos(\Omega t)$$

b)
$$\delta = \frac{1}{3} \frac{d}{m}$$

$$\omega = 2 \sqrt{\frac{2}{3} \frac{c}{m}}$$

c)
$$x(t) = \frac{F_0}{2d} \sqrt{\frac{3}{2} \frac{m}{c}} \sin(\omega t)$$